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Abstract: Given a fixed multigraph H with V(H) = {h1, . . . ,hm}, we
say that a graph G is H-linked if for every choice of m vertices
v1, . . . , vm in G, there exists a subdivision of H in G such that for
every i, vi is the branch vertex representing hi . This generalizes the
notion of k-linked graphs (as well as some other notions). For a family
H of graphs, a graph G is H-linked if G is H-linked for every H ∈
H. In this article, we estimate the minimum integer r = r(n, k,d) such
that each n-vertex graph with σ2(G) ≥ r is H-linked, where H is the
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family of simple graphs with k edges and minimum degree at least
d ≥ 2. © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 14–26, 2008
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1. INTRODUCTION

LetH be a graph. AnH-subdivision in a graphG is a pair of mappings f : V (H) →
V (G) and g: E(H) into the set of paths in G such that:

(a) f (u) �= f (v) for all distinct u, v ∈ V (H);
(b) for every uv ∈ E(H), g(uv) is an f (u), f (v)-path in G, and distinct edges

map into internally disjoint paths in G.

A graph G is H-linked if every injective mapping f : V (H) → V (G) can be
extended to an H-subdivision in G.

Let Sk be a star with k + 1 vertices. Then a graph is k-connected if and only if it
is Sk-linked, by Fan Lemma due to Dirac [2].

Recall that a graph is k-linked if for every list v1, . . . , vk, w1, . . . , wk of 2k
vertices, there are internally disjoint paths P1, . . . , Pk such that Pi connects vi and
wi for each i. It is known that a graph with at least 2k vertices is k-linked if and
only if it is Mk-linked, where Mk is a matching of size k.

A graph is k-ordered, if for every ordered sequence of k vertices, there is a
cycle that encounters the vertices of the sequence in the given order. Let Ck denote
the cycle of length k. Clearly, a simple graph G is k-ordered if and only if G is
Ck-linked.

Recall that Dirac [1] found sufficient conditions for a simple graph G to be
Hamiltonian in terms of the minimum degree, δ(G), and Ore [15] found similar
conditions in terms of σ2(G), the minimum value of the sum deg(u) + deg(v) over
all pairs {u, v} of non-adjacent vertices inG. For a familyH of graphs, letDH(n) be
the minimum integer d such that for each n-vertex graphGwith δ(G) ≥ d,G isH-
linked for every graphH ∈ H. Similarly, let RH(n) be the minimum integer r such
that each n-vertex graph G with σ2(G) ≥ r is H-linked for every graph H ∈ H.
When H = {H}, we use the notation DH (n) = DH(n) and RH (n) = RH(n).

Several authors studied DCk (n) and RCk (n), see [3–5,7,10,12,14], and it was
shown in [12] that DCk (n) = 	n/2
 + �k/2� − 1 for every n ≥ 5k + 6 and in [5]
that RCk (n) = n+ �(3k − 9)/2� for every 3 ≤ k ≤ n/2. The values DMk

(n) and
RMk

(n) were determined in [9] for all n and k. After the concept of H-linkage was
introduced independently in [11] and [6], the value DH(n) was also studied for
more general H.

Let H(k, d) be the collection of simple graphs with k edges and minimum degree
at least d. It was shown in [13] thatDH(k,2)(n) = �(n+ k)/2� − 1 for alln ≥ 5k + 6.
In particular, it occurs that DH(k,d)(n) = DH(k,2)(n) for every d ≥ 2.
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The value DH (n) for an arbitrary multigraph H was discussed in [6,8,12].
In this article, we study the function RH(k,d)(n). We determine RH(k,2)(n) for all

n ≥ k.

Theorem 1. Let k ≥ 3 and H(k, 2) be the family of simple graphs with k edges
and minimum degree at least 2. Then

RH(k,2)(n) =




�n+ (3k − 9)/2�, if n > 2.5k − 5.5,

�n+ (3k − 8)/2�, if 2k ≤ n ≤ 2.5k − 5.5,

2n− 3, if k ≤ n ≤ 2k − 1.

Observe that the value of RH(k,2)(n) is not always the same as RCk (n), and also
that RH(k,2)(n) > 2DH(k,2)(n) when k and n are large.

We also give upper bounds on RH(k,d)(n) for d ≥ 3 when n > 2k and k ≥ d(d +
1). These bounds are exact if d divides k and differ by 1 from the lower bounds in
other cases. Note that simple graphs with k edges and minimum degree at least d
exist only if k ≥ d(d + 1)/2.

Theorem 2. Let d ≥ 3 and k ≥ d2. Let H(k, d) be the family of simple graphs
with k edges and minimum degree at least d. Then for n ≥ k − 1 + d + 3k/d,

RH(k,d)(n) ≤ n+ k − d − 3 +
⌈
k + 1

d

⌉
. (1)

Furthermore, if k ≥ d(d + 1), then RH(k,d)(n) ≥ n+ k − d − 4 + ⌈
k+1
d

⌉
. If, in

addition, d divides k, then we have equality in (1).

In both, Theorems 1 and 2, we actually prove a stronger statement: in the
subdivisions of H that we find, each edge of H is replaced by a path of length
at most 3.

Unlike in the situation with DH(k,d)(n), we have RH(k,d)(n) < RH(k,2)(n) when
d > 2 and k ≥ d(d + 1).

In the next section, we prove the upper bounds for Theorem 2. Then in Section 3,
we show how to modify this proof in order to get the upper bounds for Theorem 1.
In Section 4, we prove the lower bounds by giving examples.

2. UPPER BOUNDS FOR THEOREM 2

Let d ≥ 2 and k ≥ d2. Let G be a graph with n ≥ k − 1 + d + 3k/d vertices and
σ2(G) > n+ k(1 + 1/d) − 3 − d. Let H be any simple graph with k edges and
minimum degree at least d.

Let f : V (H) → V (G) be an injective mapping and S = f (V (H)). Let E(H) =
{e0
i = u0

i v
0
i : 1 ≤ i ≤ k}. For 1 ≤ i ≤ k, let ui = f (u0

i ), vi = f (v0
i ), ei = (ui, vi),

βi = 1
degH (u0

i )
, and γi = 1

degH (v0
i )

. Since δ(H) ≥ d, we have s = |S| = |V (H)| ≤
2k/d.

Journal of Graph Theory DOI 10.1002/jgt
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Assume that uivi ∈ E(G) for k − w+ 1 ≤ i ≤ k, where w ≥ 0.
Construct the auxiliary bipartite graph B with partite setsW1 andW2 as follows.

Let W1 = {e1, . . . , ek−w}, W2 = V (G) − S, and let a pair (ei, v) be an edge in B if
v ∈ NG(ui) ∩NG(vi). If B has a matching saturating W1, then this matching gives
the required linkage. Otherwise, let m be the size of a maximum matching in B.

By Ore’s theorem on maximum matchings in bipartite graphs, there is aQ ⊆ W1

with k − w−m = |Q| − |NB(Q)|. Denote R = NB(Q) and L = V (G) − S − R.
We may assume that Q = {ei : i = 1, . . . , q}. Let Q′ = ⋃q

i=1{ui, vi} (the
elements of Q are ordered pairs, and the elements of Q′ are all the elements
of these pairs). Note that |Q| = q, |Q′| ≤ 2q, |R| = q− k + w+m, and |L| =
n− s+ k − q−m− w.

Let P be a maximum matching in B. By the definition of Q and König-
Ore Theorem on matchings in bipartite graphs, every maximum matching in
B covers all vertices in W1 −Q. Hence, we may assume that only vertices in
D = {e1, . . . , ek−w−m} are not covered by this matching. Let D′ = {ui, vi : 1 ≤
i ≤ k − w−m}. Consider the linkage P corresponding to P . Let Z be the set of
vertices of V (G) − S not participating in the linkage. Clearly, |Z| = n− s−m.

Claim 1. Let φ1(k, d, s, w) = k − 1 + d + ⌈
k+1
d

⌉ − s− w and φ2(k, d, s) = k +
1 − d + ⌈

k+1
d

⌉ − s. Then for every 1 ≤ i ≤ k − w−m,

|(N(ui) ∩N(vi)) − S| ≥ max{φ1(k, d, s, w), φ2(k, d, s)}. (2)

In particular, m ≥ max{φ1(k, d, s, w), φ2(k, d, s)}.
Proof. Since uivi is not an edge in G, vertices ui and vi together have at most

2s− 4 neighbors inS (counted with multiplicities). On the other hand, since δ(H) ≥
d, the number of such neighbors is at most 2s− 2(d + 1) + w. But degG(u1) +
degG(v1) ≥ n+ k + ⌈

k+1
d

⌉ − 3 − d. It follows that ui and vi have at least (n+ k +⌈
k+1
d

⌉ − 3 − d) − max{2s− 4, 2s− 2(d + 1) + w} − (n− s) common neighbors
outside of S, which yields (2).

The second statement of the claim follows from (2) and Hall’s Theorem. �
Remark. Recall that Hall’s Theorem yields that if the degree of each vertex u ∈
W1 in a bipartite graph B = (W1,W2;EB) is at least φ, then there is a maximum
matching covering any given φ vertices in W1 (provided that φ ≤ |W1|).
Claim 2. One can choose a maximum matching P (of size m, by definition) in B
in such a way that for every 1 ≤ i ≤ k − w−m, either of ui and vi has at least
d − 0.5w non-neighbors in S.

Proof. By the remark above, we can cover by edges in P any �φ2(k, d, s)�
vertices in Q. We will choose them as follows. For every v ∈ S, let w(v) denote
the number of edges in W = {ek−w+1, . . . , ek} incident to v. Order y1, . . . , ys,
the vertices of S in such a way that degH (f−1(yi)) − w(yi) ≤ degH (f−1(yi+1)) −
w(yi+1) for every i ≤ s− 1. Note that the value degH (f−1(yi)) − w(yi) is a lower
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bound on the number of non-neighbors (in the graph G) of yi in S (not counting yi
itself).

We first include in P the edges covering all vertices in Q that correspond to the
pairs {ui, vi} containing y1, then those containing y2, and so on, until we include
�φ2(k, d, s)� vertices. After this, by the remark above, we can complete P to a
maximum matching. Observe that for d ≥ 2, k ≥ d2, and s ≤ 2k/d,

φ2(k, d, s) ≥ k + 1 − d + k + 1

d
− 2k

d
= 1

d
+ (d − 1)

(
k

d
− 1

)
> (d − 1)2.

Also, for every d, 1 + (d − 1)2 ≥ 2(d − 1). We will show that such choice of P
provides that for every i ≤ k − w−m each of ui and vi has at least d − 0.5w
non-neighbors in S.

Let F = (S,EF ) be the graph with the vertex set S and edge set EF = {uivi :
k − w+ 1 ≤ i ≤ k}. By definition, if a vertex y ∈ S has exactly d − l

non-neighbors in S (in G), then degF (y) ≥ l. Also, we care only about l ≥ 1.
If degH (f−1(y1)) − w(y1) ≥ d, then, by the choice of y1, there is nothing to

prove. If degH (f−1(y1)) − w(y1) ≤ d − 1 and degH (f−1(y2)) − w(y2) ≥ d, then
our matching P covers all vertices corresponding to pairs {ui, vi} containing y1,
and every other vertex in S has at least d non-neighbors in S. If degH (f−1(y2)) −
w(y2) ≤ d − 1, then P covers all vertices corresponding to pairs {ui, vi} containing
y1 and y2. The only case of a simple graph F with w edges in which some three
vertices have degree greater than w/2 is the graph K3, in which case the trouble
occurs if degH (f−1(y1)) − w(y1) = degH (f−1(y2)) − w(y2) = degH (f−1(y3)) −
w(y3) = d − 2. But for every d ≥ 2, we have 1 + (d − 1)2 ≥ 3(d − 2) and all
pairs {ui, vi} containing y3 with i ≤ k − w will be covered by P . This proves
the claim. �

Lemma 1. n− s−m ≥ 2(k −m− w).

Proof. Assume that the lemma is false, that is, thatn− s−m < 2(k −m− w).
It follows that m < 2k − 2w+ s− n. Taking into account (2), we get

k − 1 + d +
⌈
k + 1

d

⌉
− s− w < 2k − 2w+ s− n

and hence n < k − w+ 2s+ 1 − d − ⌈
k+1
d

⌉
. Since s ≤ ⌊

2k
d

⌋
, we have n < k +⌊

3k−1
d

⌋ + 1 − d, a contradiction to the condition n ≥ k + 1 − d + 3k/d. �

By Lemma 1, for every i = 1, . . . , k −m− w, we can assign a vertex zi ∈ Z to
ui and a vertex z′i ∈ Z to vi so that the assigned vertices in Z are all distinct. Also,
for every k − w−m+ 1 ≤ i ≤ k − w, let yi be the common neighbor of ui and vi
corresponding to the matching P above.

Lemma 2. There exists an assignment A such that every zi is adjacent to ui and
every z′i is adjacent to vi.
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Proof. For i = 1, . . . , k −m− w, let Xi = {ui, vi, zi, z′i}, for i = k − w−
m+ 1, . . . , k − w, let Xi = {ui, vi, yi}, and for i = k − w+ 1, . . . , k, let Xi =
{ui, vi}. Let X = ⋃k

i=1Xi and Y = {yk−w−m+1, . . . , yk−w}.
For i ≤ k −m− w, ui (or vi) is senior if it has at least k − w−m neighbors

outside of S ∪ Y , otherwise it is junior.

Claim 3. The vertices z1, z
′
1, . . . , zk−m−w, z′k−m−w can be chosen so that for each

senior vertex ui (respectively, vi), zi is adjacent to ui (respectively, z′i is adjacent
to vi).

Proof. Consider the auxiliary bipartite graph F = (F1, F2;EF ), where F1 is
the set of senior vertices (taken with multiplicities) and F2 = V (G) − S − Y .
We join a vertex in F1 with a vertex in F2 if the corresponding vertices are
adjacent in G. Then our claim is equivalent to the existence of a matching
saturating F1 in F .

Suppose that F has no matching saturating F1. Then by Hall’s Theorem there
exists T ⊂ F1 such that |NF (T )| ≤ |T | − 1. By the definition of senior vertices,
|T | > |NF (T )| ≥ k − w−m. Then since |F1| ≤ 2(k − w−m), there is some i
such that ui, vi ∈ T . Note that (N(ui) ∩N(vi)) − S − Y = ∅ by the maximality
of m. Therefore, |NF (T )| ≥ (k − w−m) + (k − w−m) ≥ |F1|, a contradiction
to the choice of T . �

Among choices of zi and z′i satisfying Claim 3, choose one with the maximum
number of edges of the kind ziui and z′ivi. Suppose that u1z1 �∈ E(G). Then u1 is
junior and hence has at most k − w−m− 1 neighbors outside of S ∪ Y . By the
choice, u1 has no neighbors outside of X.

Claim 4.

|N(u1) ∩ (X− S)| + |N(z1) ∩ S| ≤ k(1 + 1/d) − 1 − w
d − 1

d
.

Proof. For i = 1, . . . , k, let pi denote the sum of the number of neighbors of
u1 in {zi, z′i} (if k − w−m+ 1 ≤ i ≤ k − w, then zi = z′i = yi; if i ≥ k − w+ 1,
then {zi, z′i} = ∅) plus βi if ui ∈ NG(z1) and plus γi if vi ∈ NG(z1). By the
definition,

k∑
i=1

pi = |N(u1) ∩ (X− S)| + |N(z1) ∩ S|.

Thus, we need to estimate
∑k

i=1 pi. For j = 0, 1, 2, let

Ij = {i : u1 has exactly j neighbors in {zi, z′i} }.

If i ∈ I0, then pi ≤ βi + γi ≤ 2/d. Moreover, if i ≤ k − w−m, then z1 cannot be
adjacent to bothui andvi by the maximality ofm. Hencepi ≤ 1/d if i ≤ k −m− w.

Journal of Graph Theory DOI 10.1002/jgt
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If i ∈ I1, then z1 cannot be adjacent to bothui and vi, since otherwise we switch z1

with the element of {zi, z′i} adjacent tou1. Thus, in this case,pi ≤ 1 + max{βi, γi} ≤
1 + 1/d.

Let i ∈ I2. If z1 is adjacent to, say, ui, then we switch z1 with zi and get a better
assignment. Thus, in this case, pi = 2.

Since u1 is junior, |I2| ≤ |I0| − 1 − w and hence some i′ ≤ k −m− w belongs
to I0. It follows that

k∑
i=1

pi ≤ pi′ + 2

d
(|I0| − 1) + d + 1

d
|I1| + 2|I2|

≤ pi′ + w
2

d
+ d + 1

d
(k − 1 − w) ≤ d + 1

d
k − 1 − w

d − 1

d
.

This proves the claim. �

By Claim 2, |N(u1) ∩ S| ≤ s− 1 − d + w/2. Since |N(u1) ∩ (V (G) −X)| = ∅,
Claims 2 and 4 yield

deg(u1) + deg(z1) = |N(u1) ∩ S| + |N(u1) ∩ (X− S)|
+ |N(z1) ∩ (V (G) − S)| + |N(z1) ∩ S|

≤ (s− 1 − d + w

2
) + |N(u1) ∩ (X− S)|

+ (n− 1 − s) + |N(z1) ∩ S|

≤ n− 2 − d + w

2
+ k(1 + 1/d) − 1 − w

d − 1

d
,

a contradiction to deg(u1) + deg(z1) > n+ k(1 + 1/d) − 3 − d. �

Lemma 3. The assignment A in Lemma 2 can be chosen in such a way that for
every 1 ≤ i ≤ k −m− w, zi is adjacent to z′i.

Proof. Choose an assignmentA satisfying Lemma 2 so that as many as possible
zi are adjacent to corresponding z′i. DefineXi(i = 1, . . . , k),X, andY as in the proof
of Lemma 2. We may renumber (ui, vi) so that, for some 0 ≤ l ≤ k − w−m, we
have ziz′i ∈ E(G) if l+ 1 ≤ i ≤ k − w−m and ziz′i /∈ E(G) if 1 ≤ i ≤ l. If l = 0,
then the lemma holds. Suppose that l ≥ 1.

For i = 1, . . . , k, let qi denote the number of neighbors ofX1 (with multiplicities)
in {zi, z′i} (if k − w−m+ 1 ≤ i ≤ k − w, then zi = z′i = yi) plus βi times the
number of neighbors of ui in {z1, z

′
1} and plus γi times the number of neighbors of

vi in {z1, z
′
1}. By the definition,

∑k
i=1 qi is equal to the total number of neighbors

of X1 in X (counted with multiplicities) minus the total number of the neighbors
of the set {u1, v1} in S (also counted with multiplicities).
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Since l ≥ 1, each member of X1 has exactly one neighbor in X1, and hence
q1 = 2 + β1 + γ1. Clearly, qi ≤ 2(βi + γi) ≤ 4/d for k − w+ 1 ≤ i ≤ k.

Claim 5.

qi ≤
{

6 + 2/d, for 2 ≤ i ≤ k − w−m,

4 + 2/d, for k − w−m+ 1 ≤ i ≤ k − w.

Proof.

Case 1. 2 ≤ i ≤ k − w−m. By the maximality of m, neither of z1 and z′1 is a
common neighbor of ui and vi and neither of zi and z′i is a common neighbor of u1

and v1. Thus, qi ≤ 6 + 2 max{βi, γi} ≤ 6 + 2/d.

Case 2. k − w−m+ 1 ≤ i ≤ k − w. If u1 or v1 is not adjacent to yi, then qi ≤
3 + 2(βi + γi) ≤ 4 + 2/d and we are done. Thus, we may assume that u1yi, v1yi ∈
E(G). If qi > 4 + 2/d, then z1 and z′1 together contribute more than 2 + 2/d to
qi. In this case, either z1 or z′1 is adjacent to both ui and vi. This contradicts the
maximality of m. So, qi ≤ 4 + 2/d. �
Claim 6. For each v /∈ X, |N(v) ∩ {u1, v1, z1, z

′
1}| ≤ 2.

Proof. Otherwise, we can swap vwith either z1 or z′1 so that the new assignment
is better than A. �

Let F = deg(u1) + deg(v1) + deg(z1) + deg(z′1). Since u1v1 /∈ E(G) and z1z
′
1 /∈

E(G), we have F > 2n+ 2k(1 + 1/d) − 6 − 2d. On the other hand, in view of the
claims above, and the fact that for every k − w+ 1 ≤ j ≤ k, |{u1, v1} ∩ {uj, vj}| ≤
1, we have

F ≤ 2(n− |X|) +
k∑
i=1

qi +
(
2(s− 1) − (|NH (u0

1)| + |NH (v0
1)|) + w

)

≤ 2(n− s− 2(k − w−m) −m) + 2 + 2/d + (k − w−m− 1)(6 + 2/d)

+m(4 + 2/d) + 4w/d + (2(s− 1) − 2d + w)

≤ 2n+ 2k(1 + 1/d) − 6 − 2d − w(1 − 2/d)

≤ 2n+ 2k(1 + 1/d) − 6 − 2d.

This contradiction proves Lemma 3 and hence Theorem 2. �

3. UPPER BOUNDS FOR THEOREM 1

Let d = 2. If k = 3, then the statement follows from the original result of Ore [15].
Let k ≥ 4. Analyzing the proof of Theorem 2, we find that in order to prove

Theorem 1 we need to modify only the proof of Lemma 1. In this section, we prove
this lemma under conditions of Theorem 1.

Journal of Graph Theory DOI 10.1002/jgt
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Proof of Lemma 1. Choose (u1, v1) ∈ Q such that u1 and v1 together have the
minimum number of neighbors in S (with multiplicities) among all pairs inQ. One
of u1 and v1 is not adjacent to at least half of vertices ofL. We may assume that v1 is
this vertex and v1 is not adjacent toL1 ⊆ Lwith |L1| ≥ 0.5|L|. Let x be the number
of non-neighbors of v1 in S. We have 1 ≤ x ≤ |NH (v0

1)|, since u1v1 �∈ E(G). Thus

deg(v1) ≤ n− 1 −
(
x+ n− s+ k − q−m− w

2

)
. (3)

Let u ∈ L1 and T = Q′ −N(u). Let |T | = t. Then at least one end of each pair
of Q is not adjacent to u, that is, every pair in Q should have at least one end in T .
This means that ∑

v∈f−1(T )

degH[f−1(Q′)](v) ≥ q. (4)

Since δ(H) ≥ 2, we have∑
v∈f−1(T )

degH[f−1(Q′)](v) + 2(s− t) ≤ 2k, (5)

that is,

t ≥ q/2 + s− k. (6)

By definition,

deg(u) ≤ n− 1 − t. (7)

Therefore,

deg(v1) + deg(u) ≤ 2(n− 1) −
(
x+ n− s+ k − q−m− w

2

)

− (q/2 + s− k). (8)

Since uv1 �∈ E(G),

deg(v1) + deg(u) ≥ n+ (3k − c)/2, (9)

where c = 8 if n ≤ 2.5k − 5.5 and c = 9 otherwise. Thus, we have

2(k −m− w) ≤ n− s−m− w+ (c − 4) − 2x. (10)

If 2(k −m− w) ≤ n− s−m, we are done. Otherwise, c − 4 − w− 2x ≥ 1.
If c = 8, thenw+ 2x ≤ 3. Note thatw+ x ≥ 2 and x ≥ 1, x = w = 1 and in the

above argument, |L1| = 0.5|L| and we also achieve equalities in (3)–(10). Since
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|L1| = 0.5|L|, the roles of u1 and v1 are interchangeable. But when we consider
u1, since H is simple, x ≥ 2. Therefore, 2(k −m− w) ≤ n− s−m.

Now let c = 9 and n > 2.5k − 5.5. Note that since w+ x ≥ 2, we have the
following two cases.

Case 1. (x,w) = (2, 0), or (x,w) = (1, 2). In either situation, 2(k − w−m) =
n− s−m+ 1. Moreover, |L1| = 0.5|L| and we achieve equalities in (3)–(10).
More specifically:

(I) Since |L1| = 0.5|L|, the roles of u1 and v1 are interchangeable.
(II) By (5), in H , every vertex in f−1(S − T ) has degree 2.

(III) By (6), q is even and t = q/2 + s− k. By (9), k is odd. Thus |Q| ≤ k − 3.
(IV) By (7), (8), deg(v1) = n− 1 − x− |L|/2 and deg(u) = n− 1 − t.
(V) By (10), 2(k −m− w) = n− s−m− w+ 1, that is, n = 2k + s−m−

w− 1.

If (x,w) = (1, 2), then u1 has exactly one non-neighbor in S too, otherwise,
instead of considering v1, we consider u1 and thus x = w = 2, we are done. Hence,
either of u0

1 or v0
1 has degree 2 in H . If q ≥ 3, then there is a pair (u′

1, v
′
1) in Q

with more non-neighbors in S than (u1, v1), a contradiction. Thus q = 2. But then
t ≤ 1. Thus, deg(u) ≥ n− 2 and u is a common neighbor of another pair in Q, a
contradiction to the choice of Q.

If (x,w) = (2, 0), then in H , u0
1, v

0
1 both have degree 2. In fact, we may choose

any pair of Q and the same argument works. Thus, every end of an edge in Q
has degree 2 in H . Together with (II), this yields that H is 2-regular. Hence s = k.
Therefore, t = q/2 and deg(u) = n− 1 − q/2, that is, u is adjacent to every vertex
of S −Q. Note that for every v ∈ Q, deg(v) = n− 1 − |L|/2, that is, v is adjacent
to every vertex of R. Observe that |R| ≥ n+ (3k − 9)/2 − (n− 2) − (k − 2) =
(k + 3)/2. Thus by V), n = 3k − 1 −m = 3k − 1 − (k − |Q| + |R|) = 2k − 1 +
|Q| − |R| ≤ 2k − 1 + (k − 3) − (k + 3)/2 = 2.5k − 5.5, a contradiction.

Case 2. w = x = 1. Then v1uj ∈ E(G) for some j. We observe that since w =
1, u1 and v1 have at most s− 3 + s− 2 = 2s− 5 neighbors in S (counting with
multiplicities). Thenu1 and v1 together have at leastn+ (3k − 9)/2 − 2s+ 5 edges
to V (G) − S, and hence at least (3k + 1)/2 − s ≥ (k + 1)/2 common neighbors in
V (G) − S. It follows that q ≥ 1 + (k + 1)/2 ≥ 3. Thus, we are able to choose a
pair in Q such that either each end of the pair has at least 2 non-neighbors in S, or
one end of the pair is uj, and the other end has fewer neighbors in S, a contradiction
to the choice of u1, v1. �

4. EXAMPLES

In this section, we give three examples to prove the lower bounds of Theorems 2
and 1.
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Example 1. Let d ≥ 2. Let V (G) = Q1 ∪Q2 ∪ L ∪ T , where |Q1| = |Q2| =
	k/d
, |L| = k − 1, and |T | = n− 2	k/d
 − k + 1. Since k ≥ d2, there exists a
bipartite simple graph G1 = (Q1,Q2;E1) such that the degrees of all vertices are
at least d and at most d + 1. Moreover, if k/d is an integer, then there exists a
d-regular bipartite graph G1 = (Q1,Q2;E1). Let the complement of our graph
G be the union of the complete bipartite graph G(Q1, T ) with the partite sets
Q1 and T and the graph G1. If d divides k, then each vertex in Q1 has degree
2k/d − 1 − d + k − 1, each vertex in T has degree n− 1 − k/d, and the degree of
each vertex in Q2 is n− 1 − d. Since k ≥ d2, when d divides k, we have

σ2(G) = (2k/d − 1 − d + k − 1) +min{n− 1 − k/d, n− 1 − d}
= n+ k(1 + 1/d) − 3 − d.

If d does not divide k, then each vertex in Q1 has degree at least 2	k/d
 − 1 −
d − 1 + k − 1, each vertex in T has degree n− 1 − 	k/d
, and each vertex in Q2

has degree at least n− 1 − d − 1. Since k ≥ d(d + 1), we have n− 1 − 	k/d
 ≤
n− d − 2 and therefore

σ2(G) = n+ k +
⌊
k

d

⌋
− 4 − d = n+ k +

⌈
k + 1

d

⌉
− 5 − d.

Take H to be the bipartite graph G1 = (Q1,Q2;E1). We claim that G has no H-
subdivision in which the branch vertices are the original vertices of H . If G had
such a subdivision, then every path of this subdivision corresponding to an edge in
H would contain a vertex in L, but |L| < k.

This example shows that (n+ k(1 + 1/d) − 3 − d) + 1 is a lower bound for
RH(k,d)(n) for each n ≥ 2k if k ≥ d2 and d ≥ 2 divides k. When d ≥ 3 does not
divide k and k ≥ d(d + 1), then the example yields the bound RH(k,d)(n) ≥ n+
k − d − 4 + ⌈

k+1
d

⌉
.

Example 2. Let d = 2, k ≥ 3 be odd, 0 ≤ r ≤ k − 3, and 2k ≤ n ≤ 2.5k − 5.5.
Let V (G) = T ∪Q1 ∪Q2 ∪ L1 ∪ L2 ∪ R, where |T | = 3, |Q1| = |Q2| = (k −
3)/2, |L1| = |L2| = k − 2 − r, and |R| = r. Define the complement, G, of G as
follows:

E(G) = {uv : u, v ∈ T } ∪ {uv : u ∈ Q1, v ∈ L1}
∪ {uv : u ∈ Q2, v ∈ L2} ∪ E(Ck−3),

where Ck−3 is a spanning cycle inQ1 ∪Q2 and vertices ofQ1 andQ2 alternate on
Ck−3.

For u ∈ Q1 ∪Q2, deg(u) = (k − 3) + r + (k − 2 − r) = 2k − 5; for v ∈ L1 ∪
L2, deg(v) = n− 1 − (k − 3)/2; for each other vertex u, deg(u) ≥ n− 3. Thus,
σ2(G) = min{2k − 5 + n− 1 − (k − 3)/2, 2(2k − 5)}. For n ≤ 2.5k − 5.5, we
have σ2(G) = n+ (3k − 9)/2.
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Let H = C3 ∪ Ck−3 and take T and Q1 ∪Q2 as the sets of branching vertices
for C3 and Ck−3, respectively. We claim that G has no H-subdivision with
these branch vertices. Indeed, each path corresponding to an edge in Ck−3

contains either a vertex in R or a vertex in L1 plus a vertex in L2. Each path
corresponding to an edge in C3 contains a vertex in R ∪ L1 ∪ L2. If we spend
all r vertices in R for paths corresponding to edges in Ck−3, we still need 3 +
2(k − 3 − r) = 2k − 3 − 2r vertices fromL1 ∪ L2, but have there only 2k − 4 − 2r
of them.

Note that n(G) = k + r + 2(k − 2 − r) = 3k − 4 − r. Thus, this example
shows that RH(k,d2)(n) > n+ (3k − 9)/2 for each n ∈ [2k − 1, 2.5k − 5.5] and
odd k ≥ 3.

Example 3. Let d = 2, k ≥ 3 be odd, and n > 2.5k − 5.5. An example for k = 3
andH = C3 is an n-vertex graphG that is the union of two complete graphs sharing
exactly one vertex. This graph G has no cycle through two vertices separated by
the cut vertex and σ2(G) = n(G) − 1.

Let k ≥ 5 and H = Ck. Let V (G) = T ∪Q1 ∪Q2 ∪ L ∪ T , where |Q1| =
(k − 1)/2, |Q2| = (k + 1)/2, |L| = k − 2, and |T | = n− 2k + 2. Define the
complement, G, of G as follows:

E(G) = {uv : u ∈ Q1, v ∈ T } ∪ E(Ck),

where Ck is a spanning cycle in Q1 ∪Q2 and vertices of Q1 and Q2 alternate on
Ck apart from one edge of Ck connecting two vertices in Q2.

Each vertex in Q1 has degree (k − 3) + (k − 2), each vertex in T has degree
n− 1 − (k − 1)/2, each vertex in Q2 has degree n− 3, and vertices in L are all-
adjacent. Since k ≥ 5, we have

σ2(G) = (2k − 5) + min{n− 1 − (k − 1)/2, n− 3} = n+ (3k − 11)/2.

We claim that G has no H-subdivision with Q1 ∪Q2 as the set branch vertices
arranged so that no edge of G connects the images of adjacent vertices of H .
Indeed, each path in G corresponding to an edge in H , apart from one, should
contain a vertex in L, but |L| = k − 2, a contradiction.

This shows that RH(k,2)(n) ≥ n+ (3k − 9)/2 for each n > 2.5k − 5.5 and odd
k ≥ 3.
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[3] Y. Egawa, R. J. Faudree, E. Györi, Y. Ishigami, R. H. Schelp, and H. Wang,
Vertex-disjoint cycles containing specified edges, Graphs Combin 16 (2000),
81–92.

[4] J. Faudree, R. Faudree, R. Gould, M. Jacobson, L. Lesniak, On k-ordered
graphs, J Graph Theory 35 (2000), 69–82.

[5] R. Faudree, R. J. Gould, A. V. Kostochka, L. Lesniak, I. Schiermeyer, and A.
Saito, Degree conditions for k-ordered hamiltonian graphs, J Graph Theory
42 (2003), 199–210.

[6] M. Ferrara, R. J. Gould, G. Tansey, and T. Whalen, On H-linked graphs, Graphs
Combin 22(2) (2006), 217–224.

[7] R. J. Gould, Advances on the Hamiltonian problem—A survey, Graphs
Combin 19 (2003), 7–52.

[8] R. J. Gould, A. Kostochka, and G. Yu, A lower bound for minimum degree in
H-linked graphs, SIAM J Discrete Math 20(4) (2006), 829–840.

[9] K. Kawarabayashi, A. Kostochka, and G. Yu, On sufficient degree conditions
for a graph to be k-linked, Combin Probab Comput 15(5) (2006), 685–694.
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